Где стоят конденсаторы. Керамические конденсаторы км

Название которых она получила благодаря основному цвету корпуса - красному и его оттенков (из-за чего их так же бывает называют «рыжими»). Конечно, встречаются и корпуса желтого цвета. Данный тип конденсаторов представляет собой «подушечки» компаунда, который нанесен на пластину конденсатора и окрашен в красный, оранжевый или желтый цвета. Емкости и размеры этих конденсаторов различны, вывода необходимо откусывать «по корешок», так, чтобы ничего не оставалось. Не смотря на высокую цену, подобный «микс» , «смесь» из конденсаторов различных типов, конечно, отличается от стоимости «зеленых» в меньшую сторону. Это обусловлено прежде всего значительной массой корпуса по сравнению с содержимым. Обратите внимание, что, как правило, «выход» по содержанию металлов таких, как , во многом зависит от многих факторов, однако принято считать, что чем меньше размер конденсатора, тем больше вес его корпуса и выводов внутри корпуса по сравнению с содержимым. Именно поэтому мелкие конденсаторы чаще дешевле, чем крупные. Обратите внимание, что далеко не все конденсаторы или радиодетали, которые принимают за конденсаторы «красные» таковыми являются. На фото изображены примеры непосредственно «красных» конденсаторов, которые принимаются.

Засор и единица измерения конденсаторов КМ

Очень часто в смеси присутствует так называемый «засор» - детали похожие на красные конденсаторы, но таковыми не являющиеся. Данная позиция – весовая, поэтому необходимо взвешивать общее количество конденсаторов, предназначенных к сдаче. Принято в качестве единицы веса использовать килограмм, за который и дается цена. Это очень просто: 100 граммов, например, будут считаться, как 0,1 кг., 20 граммов – как 0,02 кг., 7 граммов – 0,007 кг. Стоит отметить и тот факт, что зачастую эту позицию и доставляют именно килограммами, по 10-15 килограммов, именно поэтому единицей веса принято брать килограмм для расчета.

Где можно найти конденсаторы КМ

Такие конденсаторы можно найти в различных приборах советского и послесоветского производства. Как правило, это генераторы, осциллографы, различные . Эти элементы размещаются на печатных платах вышеуказанных (и не только) устройств и нередки случаи, когда с одного прибора вполне можно получить 300 граммов конденсаторов. Для демонтажа этих конденсаторов необходимо разобрать прибор и кусачками снимать (скусывать) конденсаторы в какую-нибудь емкость, стараясь действовать таким образом, чтобы проволочные выводы конденсаторов оставались на плате, а не на корпусе конденсатора (как я уже написал «под корешок»). Случается, что данные конденсаторы залиты на плате лаком, приклеены, вывода их бывает, имеют надетый на них кембрик. Это усложняет демонтаж и увеличивает засор. Бывает даже так, что в некоторых модулях конденсаторы залиты резиноподобной массой, часто прозрачной, сильно осложняющей демонтаж этих деталей. Непосредственно, обычно пластина конденсатора внутри его окрашенного корпуса имеет вид бескорпусного конденсатора и окрашена в бежевый или коричневый цвет. При раскусывании можно разглядеть так называемые «слои» из которых состоит сам элемент. Еще раз посмотрите на фото, я думаю, что однажды запомнив, как выглядят элементы этой позиции, Вы уже ни с чем их не спутаете, ведь конденсаторы КМ по праву (вернее, по содержанию драгметаллов) – одна из наиболее дорогих позиций, за которые можно выручить неплохие деньги.

Правильная подготовка конденсаторов КМ красных

Когда конденсаторов немного, то имеет смысл рассортировать их по позициям, начиная хотя бы с размера. С другой стороны, далеко не каждый в состоянии сделать это в соответствии с содержанием драгоценных металлов, которое конечно разное у разных конденсаторов. Когда уже килограммы, то обычно их не сортируют, а сдают «миксом» (смесью), кто-то находит для себя, что сортировать для него не выгодно, кто-то просто в силу того, что зрение подводит, не может обеспечить сортировку. Это не страшно, ведь наши специалисты помогут в любом случае, это наша работа. Итак, сняв конденсаторы с плат, необходимо их перевесить. Для этого берется любая емкость, устанавливается на весы, тарируются весы (это значит, что обнуляются с установленной пустой емкостью. В этом случае они будут показывать вес только содержимого емкости, а не прибавленный к этому вес банки или пакета). Я поясняю это, ибо далеко не все работали продавцами и умеют пользоваться весами, а для контроля это не будет лишним). После этого, счастливый обладатель «КМ красных» звонит нам по телефону, договаривается о прибытии, либо о самовывозе с нашей стороны, либо уточняет адрес для . В случае самостоятельного прибытия вы получаете деньги сразу, расчет незамедлительный, в случае с посылками – по факту получения и пересчета содержимого отправка на банковскую карту или согласно иных указанных Вами почтовых реквизитов.

Уважаемые пользователи интернета! Присылайте свои фотографии и заметки о том, где и в каких приборах Вы встречали радиодетали, содержащие драгметаллы.

Перечень списаных и подлежащих утилизации приборов, различных блоков и узлов радиосвязи, с содержанием драгметалла в радиодеталях и радиоэлектронных компонентах в своем составе, просто огромен. Еще со времен распада Советского Союза, когда развалилось все и вся, когда в стране царил хаос и неразбериха, не выплачивались зарплаты и многие, чтобы заработать хоть какие - нибудь деньги и прокормить семью, приносили домой и затем разбирали на радиодетали с драгметаллом различные списаные электронные устройства с институтов и организаций. До сих пор такие приборы еще пылятся и ждут своей участи в гаражах, на дачах, а порой и на открытом воздухе, покрывшись коррозией. Ну что ж, начнем с самого распространенного.

Сразу скажем, что практически все радиодетали находятся на платах. Транзисторы КТ-803, КТ-808, КТ-809, КТ-812, КТ-908, КТ-912 находятся, обычно, в задней части приборов на алюминиевых радиаторах, транзисторы КТ-911, 2Т-911Б располагаются на алюминиевой основе, для отвода тепла, на плате.

Переключатели 11П 3Н крепятся к корпусу, а резисторы ПТП, ПП3-41, ПП3-43, ПП3-47 могут располагаться на металлической основе внутри блока или крепиться к корпусу прибора.

Поэтому сначала надо найти и разобрать прибор или блок, снять платы, а уже после этого добывать радиодетали с драгметаллом. Надо быть готовым к этому. Бытует мнение, что в телевизорах производства СССР находится много ценных радиодеталей. На самом деле, и в большинстве случаев, найти там можно несколько штук конденсаторов КМ5 зеленого цвета, реже КМ6 рыжего цвета. А также несколько транзисторов КТ-203, которые стоят по 5 -6 рублей. Возможно, если телевизор 60-70-х годов, стоит обратить внимание на лампы.

Времени на разборку такого телевизора можно затратить прилично, неговоря уже про размеры и вес самого телевизора. По радиолам, ламповым приемникам, магнитофонам аналогичная ситуация. Достаточно много конденсаторов КМ6 рыжего цвета, реже зеленого цвета в советских видеомагнитофонах серии ВМ. Также там встречаются желтые и синие керамические конденсаторы К10-17.

Рекордсменами по содержанию драгоценных металлов конечно являются вычислительные комплексы, АТС и специальные электронные устройства, изготовленные в СССР.

Но, к сожалению, такие вычислительные комплексы в наше время большая редкость. Так что размышления, где их найти, можно оставить и забыть. Самое главное в этом деле - это внимательность. Радиодетали порой могут находиться в неприметных металлических коробках и блоках. Если Вы нашли металлический короб с такими разъемами:

Значит Вы находитесь на верном пути и разборку, с целью извлечения радиодеталей, можно начинать. Также стоит обратить внимание на такие детали и компоненты с белыми контактами:

Много радиодеталей с драгметаллом находится в измерительных, вычислительных приборах, таких как: высокочастотные генераторы, частотомеры, синтезаторы частот, электронные вольтметры, осциллографы и другие приборы. Плотность населения в таких электронных устройствах очень высокая. Но все равно у них надо снимать защитные корпуса и смотреть, что находится внутри. Иногда практически ничего.

Измерительные устройства и приборы, перечисленные выше, начальных серий и первых модификаций практически не содержат радиодеталей с драгметаллом. Эти устройства отличаются большими размерами (как самого корпуса, так и отдельных ручек, переключателей, других деталей) и весом.

В таких приборах находятся мощные трансформаторы - это отчасти и объясняет большой вес изделия. Поэтому при разборке таких устройств сначала лучше заглянуть в таблицу содержания драгметаллов в приборах , чтобы иметь первоначальное представление о том, какой прибор Вы нашли и что можно добыть из него.

Иногда можно встретить приборы и устройства, на которые не поднимется рука. Они мало содержат драгметалла внутри, но как изделие, представляют ценность для радиолюбителей. Поэтому всегда можно попробовать найти такого человека, который купит данный прибор в рабочем состоянии. Или просто не ломать его. С точки зрения радиолюбителя, разборка приборов и сдача радиодеталей на лом в скупку, воспринимается крайне негативно и по этому поводу можно услышать много нелестных слов.

Радиолюбители с большим стажем относятся к радиодеталям совершенно по-другому. Для них каждая радиодеталь представляет настоящую ценность, будь то микросхема или транзистор, и порой воспринимается как воодушевленный предмет. Нынешнее же молодое поколение, в большинстве случаев, воспринимает радиотехнику и радиоэлектронику производства СССР, как золотоискатель русло реки.

Все права защищены 2012 - 2020г.

Все материалы данного сайта являются объектами авторского права (в том числе дизайн). Запрещается копирование, распространение, в том числе путём копирования на сайты в сети интернет или любое иное использование информации и объектов без предварительного согласия правообладателя.

Конденсатор — это устройство, которое способно накапливать и отдавать электрическую энергию. Конденсаторы присутствуют везде, где есть электрический ток. Они занимают от 15% до 20% перечня компонентов практически в любой электронной аппаратуре.

Немного истории

Годом изобретения конденсатора считается 1745. Принадлежит это изобретение немецкому и голландскому физикам: Эвальду Юрген фон Клейсту и Питеру ван Мушенбруку. Этот первый прототип электрического конденсатора получил название — «лейденская банка» (по названию города Лейден, где была собрана эта конструкция).

Основные характеристики

Конденсаторы КМ — это керамические монолитные конденсаторы в корпусном и бескорпусном исполнении. Они относятся к подклассу конденсаторов постоянной емкости. По классификации — это низковольтные конденсаторы с напряжением до 1600 В. Диапазон ёмкости — от 16 пФ до 2,2 мкФ. Много это или мало? Для сравнения скажем, что ёмкость Земли составляет порядка 710 мкФ.

Группа низковольтных конденсаторов КМ подразделяется на низкочастотные и высокочастотные. По назначению они делятся на три группы: 1, 2 и 3.

— группа 1 используется, когда существенным являются высокая стабильность емкости и малые потери;
— группа 2 — когда не существенно то, что характерно для группы 1;
— группа 3 — как и вторая группа, но предназначена для работы в низкочастотных цепях.

Существует больше десяти основных электрических параметров для каждого конденсатора и более 25 эксплуатационных характеристик. Подчеркнем — это только основные, полный список близок к 60-ти.
Остановимся на некоторых из них.

Номинальная емкость. Это значение стандартизировано и выбирается из определенного ряда — Е3, Е6, Е12, Е24, Е48, Е96, Е192. Для каждого десятичного интервала цифры после Е указывают на количество номинальных значений. Так, например, для Е6 имеем ряд номинальных значений емкости: 1,0 1,5 2,2 3,3 4,7 6,8 (для каждого десятичного интервала).

Для номинальных значений существует предел допустимых отклонений, который выражается в процентах. Например: ±0,1%, ±0,25%, ... ±30%, (-10+30)%, (-20+50)%.

Номинальное напряжение. Это напряжение, при котором конденсатор может работать в определенных условиях и сохранять свои параметры в допустимых пределах. Для конденсаторов КМ в зависимости от модификации диапазон значений лежит в пределах от 25В до 250В.

Температурный коэффициент емкости (ТКЕ). Он применяется для конденсаторов с линейной зависимостью емкости от температуры.

Значение ТКЕ: по этому параметру можно определить, на сколько изменится емкость конденсатора, если температура окружающего воздуха изменится на один градус в заданном диапазоне температур (используют шкалы как Цельсия, так и Кельвина). Ряд ТКЕ конденсаторов КМ: П33, МПО, М47, М75, М750, М1500, Н30, Н50, Н90.

Модификации конденсаторов КМ

Производили следующие модификации конденсаторов: КМ-3, КМ-4, КМ-5, КМ-6.

КМ-4, КМ-5, КМ-6 — могут быть 1 или 2 типа, КМ-3 — только 2 типа.

Конструктивные варианты исполнения:

— неизолированные, разнонаправленные выводы: КМ-3а, КМ-4а, КМ-5а
— неизолированные, однонаправленные выводы: КМ-3б, КМ-4б, КМ-5б
— изолированные, однонаправленные выводы: КМ-3б, КМ-4б, КМ-5б, КМ-6(а, б)
— незащищенные: КМ-3в, КМ-4в, КМ-5в

Диапазон номинальных емкостей:

КМ-3 680 пФ — 22 нФ
КМ-4 16 пФ — 47 нФ
КМ-5 16 пФ — 0,15 мкФ
КМ-6 120 пФ — 2,2 мкФ

Распределение КМ по значению номинального напряжения (В) и группам ТКЕ:

ТКЕ

Применение

Конденсаторы КМ предназначены для работы в цепях постоянного, переменного и импульсного тока. Используются в любой электронной аппаратуре: в бытовой технике, системах связи, измерительной и научной аппаратуре, в промышленном оборудовании и т.д.

Драгметаллы в конденсаторах КМ

Использование в конденсаторах таких материалов как палладия, платины и серебра обусловлено технологическими требованиями и имеет рациональную основу.

Конструктивно конденсаторы выполнены из керамического диэлектрика с нанесенным на него с двух сторон тонким слоем металла (обкладка конденсатора). От выбранного материала диэлектрика и обкладок зависят технические и эксплуатационные характеристики конденсатора.

В качестве диэлектрика используют специальную керамику на основе титаната кальция, циркония и бария. Технологии позволяют получить сверхтонкие слои диэлектрика и собирать их в сэндвичи. Это обеспечивает низкую электрическую проводимость, емкости конденсаторов от долей пикофарад и номинальное напряжение в широком диапазоне.

В зависимости от применяемой технологии нанесения металлов на диэлектрик, варьируется использование и содержание одного из этих драгметаллов в обкладках конденсаторов. При технологическом требовании высокой температуры обжига керамики применение серебра ограничено и больше используется палладий и платина.

Любопытная информация: оказывается, из всего объема палладия, который необходим для электронной промышленности, доля палладия, используемого для производства керамических конденсаторов, может доходить до 60%.

С учетом того, что технологии производства конденсаторов осваивались последовательно, исходя из технических требований, то и содержание этих драгметаллов в конденсаторах должно зависеть, как от завода, так и от года их производства.

Как уже говорилось выше, содержание керамических конденсаторов в отработанной электронной аппаратуре может доходить до 20% от количества компонентов, а в некоторых изделиях — и выше. Проблема переработки отходов электронной промышленности сегодня — фактически нерешенная проблема. В связи с этим, на рынке существует достаточно большое количество предложений, призывающих собирать и сдавать непригодные к эксплуатации электронные устройства.

По керамическим конденсаторам КМ составлены перечни с признаками, определяющими тип конденсаторов и их ориентировочную ценность. Содержание этих «списков» может отличаться друг от друга, но прослеживается общность определенных параметров, по которым можно определить ценность того или иного типа конденсатора КМ.

Ниже приведены некоторые группы предложений от разных скупщиков конденсаторов. В столбце «Пример маркировки» знак «/» указывает на разделение строчек надписи на самом корпусе конденсатора.

Признак

Цена (%)

Пример маркировки

зеленые, тонкие

5/Н30/22Н/1178

зеленые, тонкие

рыжие, толстые

6БН90/2М2/12-75

рыжие, толстые

6Б/Н50/М10/0378

рыжие, толстые

рыжие, толстые

6В/Н90/1m0/0985, 6H90/1M0/0480

зеленые, тонкие

зеленые, тонкие

5F/M1/V2, 5/M1500/4H7/1078

рыжие, толстые

Признак

Цена (%)

Пример маркировки

зеленые, тонкие

5Н30/68Н/0481, 5/Н30/68Н/1079

зеленые, тонкие

рыжие, толстые

4H30/47H/0578, 5H30/33H/0278

рыжие, толстые

4DB/68n/U3, 5DB/47n/WD

рыжие, толстые

рыжие, толстые

6H90/1M0/0582, 6/H90/1m0/0685

KM, прочие

зеленые, тонкие

5М75/1Н2/0572, 4М/Н47К/0375

рыжие, толстые

6/H90/m47/1085, 6БBF/m22/U7

Есть и более простые перечни без указания ценности,
а только с перечислением того, что принимается, например:

Линейные размеры конденсаторов КМ зависят от варианта исполнения, номинальной емкости и группы ТКЕ (размеры в мм, от мин. до макс.):

Зеленые, тонкие — от 3×3х0,3 до 13×13×3;
- рыжие, толстые, 1МФ, 2*2МФ, Н90, 1М0, 2М2 — от 14×14×6 до 14×14×10;
- рыжие, толстые, прочие — от 6,5×6,5×4,5 до 14×14×6.

Определенную разность предложений можно объяснить индивидуальными условиями и особенностями бизнеса. Абсолютные значения цен на драгметаллы зависят от множества параметров (включая цены на биржах) и нет смысла приводить их на какой-то конкретный момент времени.

Если вы смотрели мультсериал Futurama, то, возможно, помните, как робота Бендера обуяла алчность, и он продал своё тело из титана, когда цены на него резко выросли. Так вот, именно этот эпизод я вспоминаю, когда сдаю радиодетали в скупку.

Для тех, кто не в теме.

Практически в любом электронном компоненте, будь то транзистор или микросхема, присутствуют драгоценные металлы: золото, серебро, платина, палладий, иридий и др. Эти металлы можно извлечь из бэушных и старых радиодеталей, а затем вторично использовать.

По счастью мне в руки попало несколько печатных плат с "золотыми" микросхемами и иной радиолом. До этого я не интересовался сдачей радиодеталей, да и позолоченных микрух в глаза не видел. Большое количество морально устаревших и однотипных радиодеталей мне не нужно, и я решил их сдать. Ну, и, тем самым, немного подзаработать. Так я стал радиовандалом и перешёл на сторону зла .

Вот плата.

Приглядимся...

На фото - интегральный стабилизатор, микросхема КР142ЕН1Б в корпусе из "розовой" керамики с позолотой! Именно из таких микросхем можно добыть золото, поэтому их и принимают на переработку.

В каких радиодеталях есть золото?

Микросхемы, содержащие золото встречаются не часто, но всё же их можно встретить в старой радиоаппаратуре. Покажу лишь некоторые из них.

Это "розовые пиджаки" - дешифраторы 514ИД2 (аналог К514ИД2) с позолоченными выводами. По маркировке видно, что они изготовлены в 1992 году.

Вот эти дешифраторы 514ИД1 уже постарее будут, а, именно, 1988 года "рождения". Золотишка на них побольше. Взгляните на "пузо".

Вот так выглядят золотые микросхемы 564 серии (К564). На этом фото: Арифметико-логическое устройство - микросхема 564ИП3 (аналог К564ИП3) и сумматор 564ИМ1 (1КИМ1).

Микросхемы 564ЛС2 (К564ЛС2). Плёнка на выводах - это лак. Скупают их по цене где-то 15 - 20 рублей штука.

Отряд жёсткой логики - микросхемы 564ЛЕ5 (1КЛЕ5). У них золотые ножки и пузо. На рынке их принимают за 10-12 рублей штука. Кстати, микросхемы в таких корпусах довольно компактные, их можно использовать в самодельных конструкциях. Выйдет дорого и сердито.

Вот так выглядят микросхемы 564ЛЕ5, 564ЛП2, 564ТМ2, 1КЛА8 (564ЛА8), 564ЛА7 (1КЛА7), 1КЛА9 в корпусе типа "золотая коробочка".

Для тех, кто не знает, микросхемы серий К564 (564), К176, К561, К1561 являются аналогами. Выпускались в различных корпусах. Например, микросхему К176ЛА7 я видел только в пластиковом корпусе. А её аналог 1КЛА7 (она же 564ЛА7, К564ЛА7) видел как в пластике, так и в металлическом корпусе с золотыми выводами.

Вообще, как я понял, микросхемы серии К564 военной приёмки маркируют без первой буквы К.

Логические микросхемы 109ЛИ1. Это 6-ти входовый элемент "И" для работы на низкоомную нагрузку.

Во времена СССР драгметаллов для производства электронных компонентов не жалели, особенно для электроники специального назначения. Тогда, как и сейчас, на каждый тип электронного изделия составлялась документация. В ней указывалось, какие металлы, и в каком количестве идут на производство одного элемента.

Если у кого-то сохранился старый отечественный магнитофон (например, "Романтика"), то в инструкции к нему можно обнаружить страничку с таблицей. В ней указано содержание и количество драгметаллов в начинке данного аппарата.

В последствие это облегчило "оценку" принимаемого на переработку изделия. Именно поэтому скупщики предпочитают детали советского периода, к импорту относятся с лёгким недоверием.

Где можно сдать радиодетали?

Сдать радиодетали на лом можно на любом радиорынке. Наверняка уже видели вывески вроде "Куплю радиодетали дорого". Приносите своё добро скупщику (есть на каждом радиорынке), он озвучивает цену 1 единицы для каждого типа радиодеталей. Если цена вас устраивает, то отдаёте своё добро скупщику, он считает или взвешивает. Взамен вы получаете кэш (т.е наличку). Такова схема. Можно также отправлять посылки с деталями почтой специальным фирмам, но я не пробовал.

Как вы думаете, что больше всего любят скупщики радиодеталей? Транзисторы? Нет. Микросхемы? Неа. А что?! Они обожают обычные керамические конденсаторы серии КМ4, КМ5, КМ6.

Дело в том, что в этих конденсаторах в достаточном количестве содержится платина и палладий. Один килограмм конденсаторов КМ стоит в районе нескольких десятков тысяч рублей!

Вот так выглядят конденсаторы КМ5.

Также ценятся "рыжики", конденсаторы КМ6 оранжевого цвета. Я сдавал те, что на фото и скупщик их взял без вопросов. Но стоит понимать, что при непонятной маркировке даже такие конденсаторы могут не взять. Я, например, видел похожего цвета конденсаторы в китайских усилителях.

Конденсаторы принимают на вес и без выводов (откусываются). Даже если у вас 20 грамм, то взвесят и купят. Говорят, что чем больше принесёшь, тем выше цену дадут за 1 грамм. Честно говоря, я в это не верю. Всё зависит от скупщика и ценового "сговора" на радиорынке. Все скупщики на рынке знают друг друга и между ними есть определённая договорённость. Как мне объяснили, все они сдают выкупленные детали одному человеку, который регулярно приезжает и скупает всё добро уже оптом.

Схема такого бизнеса довольно проста. Скупаешь в розницу по низкой цене, затем продаёшь оптом представителю фирмы от аффинажного завода. На разнице зарабатываешь. Как то так.

В любом случае, сдавая радиодетали, нужно понимать, что их стоимость зависит не только от цены драгметалла на Лондонской бирже и курса доллара в конкретный день, но и от скупщиков. А они тоже хотят жить. Это их бизнес. Поэтому прежде чем сдавать своё добро в первом же ларьке скупщика, советую пробежаться по радиорынку и поузнавать расценки на то, что у вас есть. Я, например, выявил целую "сеть" скупщиков, которые принимают детали очень дёшево.

Если школьный курс химии для вас не прошёл даром, то в голову стукнет вполне логичная мысль: "А почему бы самому не извлечь драгметаллы из радиодеталей и продать?". Насколько знаю, за это можно получить ата та. Дело в том, что нарушение правил сдачи драгметаллов государству карается 192 статьёй УК РФ (глава 22).

Перечень радиоэлектронных изделий, которые принимают на переработку (скупают) довольно велик. Это и реле, и транзисторы, и переключатели, тумблера, конденсаторы, переменные резисторы, реостаты, индикаторы, радиолампы, и даже печатные платы! Всё, что содержит драгметаллы в достаточном количестве. Но в большинстве случаев, это, как правило, радиодетали, произведённые во времена Советского Союза.

Под занавес сего повествования, отмечу.

Я не приветствую радиовандализм. После развала союза началась лихорадка по "уничтожению" советского наследия. Под этот каток попало и электронное оборудование. Многие тогда сделали нехилые бабки на розничной скупке и оптовой продаже деталей, содержащих драгметаллы. С тех пор прошло уже немало лет, но бизнес на скупке радиодеталей ещё живёт.

Я за грамотную утилизацию. Электроника - это кладезь драгметаллов и редких химических элементов. Мне приятно, что даже на старом барахле, которое обычно выкидывают на свалку, можно немного заработать. Полученные деньги можно пустить на покупку более нужных деталей.

Они бывают полярные и неполярные. Различия их в том, что одни применяются в цепях постоянного напряжения, а другие в цепях переменного. Возможно, применение постоянных конденсаторов в цепях переменного напряжения при включении их последовательно одноименными полюсами, но они при этом показывают не лучшие параметры.

Конденсаторы неполярные

Неполярные, так же как и резисторы бывают постоянные, переменные и подстроечные.

Подстроечные конденсаторы применяются для настройки резонансных цепей в приемо-передающей аппаратуре.

Рис. 1. Конденсаторы КПК

Тип КПК. Представляют из себя посеребренные обкладки и керамический изолятор. Имеют емкость в несколько десятков пикофарад. Встретить можно в любых приемниках, радиолах и телевизионных модуляторах. Подстроечные конденсаторы также обозначаются буквами КТ. Затем следует цифра, указывающая тип диэлектрика:

1 - вакуумные; 2 - воздушные; 3 - газонаполненные; 4 - твердый диэлектрик; 5 - жидкий диэлектрик. Например, обозначение КП2 означает конденсатор переменной емкости с воздушным диэлектриком, а обозначение КТ4 - подстроечный конденсатор с твердым диэлектриком.




Рис. 2 Современные подстроечные чип-конденсаторы

Для настройки радиоприемников на нужную частоту применяют конденсаторы переменной емкости (КПЕ)


Рис. 3 Конденсаторы КПЕ

Их можно встретить только в приемо-передающей аппаратуре

1- КПЕ с воздушным диэлектриком, найти можно в любом радиоприемнике 60- 80-х годов.
2 - переменный конденсатор для УКВ блоков с верньером
3 - переменный конденсатор, применяется в приемной технике 90-х годов и по сей день, можно встретить в любом музыкальном центре, магнитофоне, кассетном плеере с приемником. В основном китайского производства.

Типов постоянных конденсаторов существует великое множество, в рамках этой статьи невозможно описать все их разнообразие, опишу лишь те, что в бытовой аппаратуре чаще всего встречаются.


Рис. 4 Конденсатор КСО

Конденсаторы КСО - Конденсатор слюдяной опресованный. Диэлектрик - слюда, обкладки - алюминиевое напыление. Залит в корпус из коричневого компаунда. Встречаются в аппаратуре 30-70-х годов, емкость не превышает несколько десятков нанофарад, на корпусе указывается в пикофарадах нанофарадах и микрофарадах. Благодаря применению слюды в качестве диэлектрика, эти конденсаторы способны работать на высоких частотах, поскольку имеют малые потери и имеют большое сопротивление утечки около 10^10 Ом.


Рис. 5 Конденсаторы КТК

Конденсаторы КТК - Конденсатор трубчатый керамический В качестве диэлектрика используется керамическая трубка, обкладки из серебра. Широко применялись в колебательных контурах ламповой аппаратуры с 40-х по начало восьмидесятых годов. Цвет конденсатора означает ТКЕ(температурный коэффициент изменения емкости). Рядом с емкостью, как правило прописывается группа ТКЕ, которая имеет буквенное или цифровое обозначение (Таблица1.) Как видно из таблицы, самые термостабильные - голубые и серые. Вообще этот тип очень хорош для ВЧ техники.

Таблица 1. Маркировка ТКЕ керамических конденсаторов

При настройке приемников часто приходится подбирать конденсаторы гетеродинных и входных контуров. Если в приемнике используются конденсаторы КТК, то подбор емкости конденсаторов в этих контурах можно упростить. Для этого на корпус конденсатора рядом с выводом наматывают плотно несколько витков провода ПЭЛ 0,3 и один из концов этой спиральки подпаивают к выводу конденсаторов. Раздвигая и сдвигая витки спиральки, можно в небольших пределах регулировать емкость конденсатора. Может случиться, что, подключив конец спиральки к одному из выводов конденсатора, добиться изменения емкости не удается. В этом случае спираль следует подпаять к другому выводу.


Рис. 6 Керамические конденсаторы. Вверху советские, внизу импортные.

Керамические конденсаторы, их обычно называют «красные флажки», также иногда встречается название «глиняные». Эти конденсаторы широко применяются в высокочастотных цепях. Обычно эти конденсаторы не котируются и редко применяются любителями, поскольку конденсаторы одного и того же типа могут быть изготовлены из разной керамики и имеют различные характеристики. В керамических конденсаторах выигрывая в размерах, проигрывают в термостабильности и линейности. На корпусе обозначается емкость и ТКЕ (таблица 2.)

Таблица 2

Достаточно взглянуть на допустимое изменение емкости у конденсаторов с ТКЕ Н90 емкость может изменяться почти в два раза! Для многих целей это не приемлемо, но все же не стоит отвергать этот тип, при небольшом перепаде температур и не жестких требованиях ими вполне можно пользоваться. Применяя параллельное включение конденсаторов с разными знаками ТКЕ можно получить достаточно высокую стабильность результирующей емкости. Встретить их можно в любой аппаратуре, особенно любят китайцы в своих поделках.

Имеют на корпусе обозначение емкости в пикофарадах или нанофарадах, импортные маркируются числовой кодировкой. Первые две цифры указывают на значение емкости в пикофарадах (пФ), последняя - количество нулей. Когда конденсатор имеет емкость менее 10 пФ, то последняя цифра может быть "9". При емкостях меньше 1.0 пФ первая цифра "0". Буква R используется в качестве десятичной запятой. Например, код 010 равен 1.0 пФ, код 0R5 - 0.5 пФ. Несколько примеров собраны в таблице:

Маркировка цифробуквенная:
22р-22 пикофарада
2n2- 2.2 нанофарада
n10 - 100 пикофарад

Хотелось бы особо отметить керамические конденсаторы типа КМ, применяются в промышленном оборудовании и военных аппаратах, имеют высокую стабильность, найти весьма сложно, потому как содержат редкоземельные металлы, и если вы нашли плату, где применяется данный тип конденсаторов, то в 70 % случаев их вырезали до вас).

В последнее десятилетие очень часто стали применяться радиодетали для поверхностного монтажа, вот основные типоразмеры корпусов для керамических чип-конденсаторов

Конденсаторы МБМ – металлобумажный конденсатор(рис 6.), применялся как правило в ламповой звукоусилительной аппаратуре. Сейчас весьма ценятся некоторыми аудиофилами. Также к данному типу относятся конденсаторы К42У-2 военной приемки, но их иногда можно встретить и в бытовой вппаратуре.


Рис. 7 Конденсатор МБМ и К42У-2

Следует отметить отдельно такие типы конденсаторов как МБГО и МБГЧ(рис.8), любителями зачастую используются как пусковые конденсаторы для запуска электродвигателей. Как пример, мой запас на двигатель на 7кВт (рис 9.). Рассчитаны на высокое напряжение от 160 до 1000в, что им дает много различных применений в быту и промышленности. Следует помнить, что для использования в домашней сети, нужно брать конденсаторы, с рабочим напряжением не менее 350в. Найти такие конденсаторы можно в старых бытовых стиральных машинах, различных устройствах с электродвигателями и в промышленных установках. Часто применяются в качестве фильтров для акустических систем, имея для этого неплохие параметры.


Рис. 8. МБГО, МБГЧ


Рис. 9

Кроме обозначения, указывающего конструктивные особенности (КСО - конденсатор слюдяной спрессованный, КТК -керамический трубчатый и т. д.), существует система обозначений конденсаторов постоянной емкости, состоящая из ряда элементов: на первом месте стоит буква К, на втором месте -двухзначное число, первая цифра которого характеризует тип диэлектрика, а вторая - особенности диэлектрика или эксплуатации, затем через дефис ставится порядковый номер разработки.

Например, обозначение К73-17 означает пленочный полиэтилен-терефталатный конденсатор с 17 порядковым номером разработки.


Рис. 10. Различные типы конденсаторов



Рис. 11. Конденсатор типа К73-15

Основные типы конденсаторов, в скобочках импортные аналоги.

К10 -Керамический, низковольтный (Upa6<1600B)
К50 -Электролитический, фольговый, Алюминиевый
К15 -Керамический, высоковольтный (Upa6>1600B)
К51 -Электролитический, фольговый, танталовый,ниобиевый и др.
К20 -Кварцевый
К52 -Электролитический, объемно-пористый
К21 -Стеклянный
К53 -Оксидо-полупроводниковый
К22 -Стеклокерамический
К54 -Оксидно-металлический
К23 -Стеклоэмалевый
К60- С воздушным диэлектриком
К31- Слюдяной малой мощности (Mica)
К61 -Вакуумный
К32 -Слюдяной большой мощности
К71 -Пленочный полистирольный(KS или FKS)
К40 -Бумажный низковольтный(ираб<2 kB) с фольговыми обкладками
К72 -Пленочный фторопластовый (TFT)
К73 -Пленочный полиэтилентереф-талатный (KT ,TFM, TFF или FKT)
К41 -Бумажный высоковольт-ный(ираб>2 kB) с фольговыми обкладками
К75 -Пленочный комбинированный
К76 –Лакопленочный (MKL)
К42 -Бумажный с металлизированными Обкладками (MP)
К77 -Пленочный, Поликарбонатный (KC, MKC или FKC)
К78 – Пленочный полипропилен (KP, MKP или FKP)

Конденсаторы с пленочным диэлектриком в простонародье называют слюдяными, различные применяемые диэлектрики дают хорошие показатели ТКЕ. В качестве обкладок в пленочных конденсаторах используют либо алюминиевую фольгу, либо напыленные на диэлектрическую пленку тонкие слои алюминия или цинка. Они имеют достаточно стабильные параметры и применяются для любых целей (не для всех типов). Встречаются в бытовой аппаратуре повсеместно. Корпус таких конденсаторов может быть как металлическим, так и пластмассовым и иметь цилиндрическую или прямоугольную форму(рис. 10.) Импортные слюдяные конденсаторы(рис.12)


Рис. 12. Импортные слюдяные конденсаторы

На конденсаторах указывается номинальное отклонение от емкости, может быть показано в процентах или иметь буквенный код. В основном в бытовой аппаратуре широко применяются конденсаторы с допуском H, M, J, K. Буква, обозначающая допуск указывается после значения номинальной ёмкости конденсатора, вот так 22nK, 220nM, 470nJ.

Таблица для расшифровки условного буквенного кода допустимого отклонения ёмкости конденсаторов. Допуск в %

Буквенное обозначение

Важным является значение допустимого рабочего напряжения конденсатора, указывается после номинальной ёмкости и допуска. Обозначается в вольтах с буквы В (старая маркировка), и V (новая маркировка). Например, так: 250В, 400В, 1600V, 200V. В некоторых случаях, буква V опускается.

Иногда применяется кодирование латинской буквой. Для расшифровки следует пользоваться таблицей буквенного кодирования рабочего напряжения конденсаторов.

Номинальное напряжение, В

Буква обозначения

Поклонники Николы Тесла имеют частую потребность в высоковольтных конденсаторах, вот некоторые которые можно встретить, в основном в телевизорах в блоках строчной развертки.


Рис. 13. Высоковольтные конденсаторы

Конденсаторы полярные

К полярным конденсаторам относятся все электролитические, которые бывают:

Алюминиевые электролитические конденсаторы обладают высокой емкостью, низкой стоимостью и доступностью. Такие конденсаторы широко применяются в радиоприборостроении, но имеют существенный недостаток. Со временем электролит внутри конденсатора высыхает и они теряют емкость. Вместе с емкостью увеличивается эквивалентное последовательное сопротивление и такие конденсаторы уже не справляются с поставленными задачами. Это как правило служит причиной неисправности многих бытовых приборов. Использование б/у конденсаторов не желательно, но все же если возникло желание их использовать, нужно тщательно измерить емкость и esr, чтоб потом не искать причину неработоспособности прибора. Перечислять типы алюминиевых конденсаторов не вижу смысла, поскольку особых отличий в них нет, кроме геометрических параметров. Конденсаторы бывают радиальные(с выводами с одного торца цилиндра)и аксиальные(с выводами с противоположных торцов), встречаются конденсаторы с одним выводом, в качестве второго-используется корпус с резьбовым наконечником(он же и является крепежом), такие конденсаторы можно встретить в старой ламповой радиотелевизионной технике. Также стоит заметить, что на материнских платах компьютеров, в импульсных блоках питания часто встречаются конденсаторы с низким эквивалентным сопротивлением, так называемые LOW ESR, так вот они имеют улучшенные параметры и заменяются только на подобные, иначе при первом включении будет взрыв.


Рис. 14. Электролитические конденсаторы. Снизу - для поверхностного монтажа.

Танталовые конденсаторы, лучше чем алюминиевые, за счет использования более дорогой технологии. В них применяется сухой электролит, поэтому им не свойственно «высыхание» алюминиевых конденсаторов. Кроме того, танталовые конденсаторы имеют более низкое активное сопротивление на высоких частотах (100 кГц), что важно при использовании в импульсных источниках питания. Недостатком танталовых конденсаторов является относительно большое уменьшение емкости с увеличением частоты и повышенная чувствительность к переполюсовке и перегрузкам. К сожалению, этот тип конденсаторов характеризуется невысокими значениями емкости (как правило, не более 100 мкФ). Высокая чувствительность к напряжению заставляет разработчиков делать запас по напряжению Увеличенным в два и более раз.


Рис. 14. Танталовые конденсаторы. Первые три отечественные, предпоследний импортный, последний импортный для поверхностного монтажа.

Основные размеры танталовых чип-конденсаторов:

К одной из разновидностей конденсаторов (на самом деле это полупроводники и с обычными конденсаторами имеют мало общего, но упомянуть их все же имеет смысл) относятся варикапы. Это особый вид диодо-конденсатора, который изменяет свою емкость в зависимости от приложенного напряжения. Применяются в качестве элементов с электрически управляемой ёмкостью в схемах перестройки частоты колебательного контура, деления и умножения частоты, частотной модуляции, управляемых фазовращателей и др.


Рис. 15 Варикапы кв106б, кв102

Также весьма интересны «суперконденсаторы» или ионисторы. При малых размерах они обладают колоссальной емкостью и часто используются для питания микросхем памяти, и иногда ими подменяют электрохимические батареи. Ионисторы могут работать и в буфере с батареями в целях защиты их от резких скачков тока нагрузки: при низком токе нагрузки батарея подзаряжает суперконденсатор, и если ток резко возрастет, ионистор отдаст запасенную энергию, чем уменьшит нагрузку на батарею. При таком варианте использования его размещают либо непосредственно возле аккумуляторной батареи, либо внутри ее корпуса. Их можно встретить в ноутбуках в качестве элемента питания для CMOS.

К недостаткам можно отнести:
Удельная энергия меньше, чем у аккумуляторов (5-12 Вт·ч/кг при 200 Вт·ч/кг для литий-ионных аккумуляторов).
Напряжение зависит от степени заряженности.
Возможность выгорания внутренних контактов при коротком замыкании.
Большое внутреннее сопротивление по сравнению с традиционными конденсаторами (10...100 Ом у ионистора 1 Ф × 5,5 В).
Значительно больший, по сравнению с аккумуляторами, саморазряд: порядка 1 мкА у ионистора 2 Ф × 2,5 В.


Рис. 16. Ионисторы